

CO306 Web Programming Lab

Ruby Programming

Student Name :_______________________________________ PRN_________________

Course Teacher: Mrs. Sharayu Bonde and Mrs Priyanka Gadade, Govt. College of Engg.,
 Jalgaon

1. Overview

Ruby is a pure object-oriented programming language. It was created in 1993 by

Yukihiro Matsumoto of Japan.

Ruby is "A Programmer's Best Friend".

Ruby has features that are similar to those of Smalltalk, Perl, and Python. Perl, Python,

and Smalltalk are scripting languages. Smalltalk is a true object-oriented language. Ruby, like

Smalltalk, is a perfect object-oriented language. Using Ruby syntax is much easier than using

Smalltalk syntax.

1.1 Features of Ruby

● Ruby is an open-source and is freely available on the Web, but it is subject to a license.

● Ruby is a general-purpose, interpreted programming language.

● Ruby is a true object-oriented programming language.

● Ruby is a server-side scripting language similar to Python and PERL.

● Ruby can be used to write Common Gateway Interface (CGI) scripts.

● Ruby can be embedded into Hypertext Markup Language (HTML).

● Ruby has clean and easy syntax that allows a new developer to learn quickly and easily.

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
1

CO306 Web Programming Lab

● Ruby has similar syntax to that of many programming languages such as C++ and Perl.

● Ruby is very much scalable and big programs written in Ruby are easily maintainable.

● Ruby can be installed in Windows and POSIX environments.

● Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.

● Ruby has a rich set of built-in functions, which can be used directly into Ruby scripts.

2. Syntax

Let us write a simple program in ruby. All ruby files will have extension .rb. So, put the

following source code in a test.rb file.

#!/usr/bin/ruby -w

puts "Hello, Ruby!";

Here, we assumed that you have Ruby interpreter available in /usr/bin directory. Now, try to run

this program as follows:

$ ruby test.rb

This will produce the following result:

Hello, Ruby!

You have seen a simple Ruby program, now let us see a few basic concepts related to Ruby

Syntax.

2.1 Whitespace in Ruby Program

Whitespace characters such as spaces and tabs are generally ignored in Ruby code, except when

they appear in strings. Sometimes, however, they are used to interpret ambiguous statements.

Interpretations of this sort produce warnings when the -w option is enabled.

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
2

CO306 Web Programming Lab

Example

a + b is interpreted as a+b (Here a is a local variable)

a +b is interpreted as a(+b) (Here a is a method call)

2.2 Line Endings in Ruby Program

Ruby interprets semicolons and newline characters as the ending of a statement. However, if

Ruby encounters operators, such as +, -, or backslash at the end of a line, they indicate the

continuation of a statement.

2.3 Ruby Identifiers

Identifiers are names of variables, constants, and methods. Ruby identifiers are case sensitive. It

means Ram and RAM are two different identifiers in Ruby.

Ruby identifier names may consist of alphanumeric characters and the underscore character (_).

2.4 Ruby Comments

A comment hides a line, part of a line, or several lines from the Ruby interpreter. You can use

the hash character (#) at the beginning of a line:

I am a comment. Just ignore me.

Or, a comment may be on the same line after a statement or expression:

name = "Madisetti" # This is again comment

You can comment multiple lines as follows:

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
3

CO306 Web Programming Lab

Here is another form. This block comment conceals several lines from the interpreter with

=begin/=end:

=begin
This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.
=end

3. Classes and Objects

Ruby is a perfect Object Oriented Programming Language. An object-oriented program involves

classes and objects. A class is the blueprint from which individual objects are created. In

object-oriented terms, we say that your bicycle is an instance of the class of objects known as

bicycles.

Take the example of any vehicle. It comprises wheels, horsepower, and fuel or gas tank

capacity. These characteristics form the data members of the class Vehicle. You can differentiate

one vehicle from the other with the help of these characteristics.

A vehicle can also have certain functions, such as halting, driving, and speeding. Even

these functions form the data members of the class Vehicle. You can, therefore, define a class as

a combination of characteristics and functions.

A class Vehicle can be defined as:

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
4

CO306 Web Programming Lab

Class Vehicle

{

 Number no_of_wheels

 Number horsepower

 Characters type_of_tank

 Number Capacity

 Function speeding

 {

 }

 Function driving

 {

 }

 Function halting

 {

 }

}

By assigning different values to these data members, you can form several instances of the class

Vehicle. For example, an airplane has three wheels, horsepower of 1,000, fuel as the type of

tank, and a capacity of 100 liters. In the same way, a car has four wheels, horsepower of 200, gas

as the type of tank, and a capacity of 25 liters.

3.1 Defining a Class in Ruby

To implement object-oriented programming by using Ruby, you need to first learn how to create

objects and classes in Ruby.

A class in Ruby always starts with the keyword class followed by the name of the class. The

name should always be in initial capitals. The class Customer can be displayed as:

class Customer

end

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
5

CO306 Web Programming Lab

You terminate a class by using the keyword end. All the data members in the class are between

the class definition and the end keyword.

3.2 Variables in a Ruby Class

Ruby provides four types of variables:

● Local Variables: Local variables are the variables that are defined in a method. Local

variables are not available outside the method. You will see more details about method in

subsequent chapter. Local variables begin with a lowercase letter or _.

● Instance Variables: Instance variables are available across methods for any particular

instance or object. That means that instance variables change from object to object.

Instance variables are preceded by the at sign (@) followed by the variable name.

● Class Variables: Class variables are available across different objects. A class variable

belongs to the class and is a characteristic of a class. They are preceded by the sign @@

and are followed by the variable name.

● Global Variables: Class variables are not available across classes. If you want to have a

single variable, which is available across classes, you need to define a global variable.

The global variables are always preceded by the dollar sign ($).

Example

Using the class variable @@no_of_customers, you can determine the number of objects that are

being created. This enables in deriving the number of customers.

class Customer

 @@no_of_customers=0

end

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
6

CO306 Web Programming Lab

3.3 Creating Objects in Ruby Using new Method

Objects are instances of the class. You will now learn how to create objects of a class in Ruby.

You can create objects in Ruby by using the method new of the class.

The method new is a unique type of method, which is predefined in the Ruby library. The new

method belongs to the class methods.

Here is the example to create two objects cust1 and cust2 of the class Customer:

cust1 = Customer. new

cust2 = Customer. new

Here, cust1 and cust2 are the names of two objects. You write the object name followed by the

equal to sign (=) after which the class name will follow. Then, the dot operator and the keyword

new will follow.

3.4 Custom Method to Create Ruby Objects

You can pass parameters to method new and those parameters can be used to initialize class

variables. When you plan to declare the new method with parameters, you need to declare the

method initialize at the time of the class creation.

The initialize method is a special type of method, which will be executed when the new method

of the class is called with parameters.

Here is the example to create initialize method: class Customer
 @@no_of_customers=0
 def initialize(id, name, addr)
 @cust_id=id
 @cust_name=name
 @cust_addr=addr
 end
end

In this example, you declare the initialize method with id, name, and addr as local variables.

Here, def and end are used to define a Ruby method initialize. You will learn more about

methods in subsequent chapters.

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
7

CO306 Web Programming Lab

In the initialize method, you pass on the values of these local variables to the instance variables

@cust_id, @cust_name, and @cust_addr. Here local variables hold the values that are passed

along with the new method.

Now, you can create objects as follows:

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

3.5 Member Functions in Ruby Class

In Ruby, functions are called methods. Each method in a class starts with the keyword def

followed by the method name.

The method name always preferred in lowercase letters. You end a method in Ruby by using the

keyword end.

Here is the example to define a Ruby method:

class Sample

 def function

 statement 1

 statement 2

 end

end

Here, statement 1 and statement 2 are part of the body of the method function inside the class

Sample. These statements could be any valid Ruby statement. For example, we can put a method

puts to print Hello Ruby as follows:

class Sample

 def hello

 puts "Hello Ruby!"

 end

end

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
8

CO306 Web Programming Lab

Now in the following example, create one object of Sample class and call hello method and see

the result:

#!/usr/bin/ruby

class Sample

 def hello

 puts "Hello Ruby!"

 end

end

Now using above class to create objects

object = Sample. new

object. hello

This will produce the following result:

Hello Ruby!

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
9

CO306 Web Programming Lab

4. If-else, case

Ruby offers conditional structures that are pretty common to modern languages. Here, we will

explain all the conditional statements and modifiers available in Ruby.

4.1 Ruby if...else Statement

Syntax

if conditional [then]
 code...
[elsif conditional [then]
 code...]...
[else
 code...]
end

if expressions are used for conditional execution. The values false and nil are false, and

everything else are true. Notice, Ruby uses elsif, not else if nor elif.

Executes code if the conditional is true. If the conditional is not true, code specified in the else

clause is executed.

An if expression's conditional is separated from code by the reserved word then, a newline, or a

semicolon.

Example

#!/usr/bin/ruby

x=1
if x > 2
 puts "x is greater than 2"
elsif x <= 2 and x!=0
 puts "x is 1"
else
 puts "I can't guess the number"

end
x is 1

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
10

CO306 Web Programming Lab

4.2 Ruby case Statement:

Syntax

case expression

[when expression [, expression ...] [then]

 code]...

[else

 code]

end

Compares the expression specified by case and that specified by when using the = = = operator

and executes the code of the when clause that matches.

The expression specified by the when clause is evaluated as the left operand. If no when clauses

match, case executes the code of the else clause.

A when statement's expression is separated from code by the reserved word then, a newline, or a

semicolon. Thus:

case expr0

when expr1, expr2

 stmt1

when expr3, expr4

 stmt2

else

 stmt3

end

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
11

CO306 Web Programming Lab

Example

#!/usr/bin/ruby

$age = 5

case $age

when 0 .. 2

 puts "baby"

when 3 .. 6

 puts "little child"

when 7 .. 12

 puts "child"

when 13 .. 18

 puts "youth"

else

 puts "adult"

end

This will produce the following result:

little child

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
12

CO306 Web Programming Lab

5. Loops

Loops in Ruby are used to execute the same block of code a specified number of times. This

chapter details all the loop statements supported by Ruby.

5.1 Ruby while Statement

Syntax

while conditional [do]

 code

end

Executes code while conditional is true. A while loop's conditional is separated from code by the

reserved word do, a newline, backslash \, or a semicolon ;.

Example

#!/usr/bin/ruby

$i = 0

$num = 5

while $i < $num do

 puts("Inside the loop i = #$i")

 $i +=1

end

This will produce the following result:

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
13

CO306 Web Programming Lab

Inside the loop i = 0

Inside the loop i = 1

Inside the loop i = 2

Inside the loop i = 3

Inside the loop i = 4

5.2 Ruby for Statement

Syntax

for variable [, variable ...] in expression [do]

 code

end

Executes code once for each element in expression.

Example

#!/usr/bin/ruby

for i in 0..5

 puts "Value of local variable is #{i}"

end

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
14

CO306 Web Programming Lab

Here, we have defined the range 0..5. The statement for i in 0..5 will allow i to take values in the

range from 0 to 5 (including 5). This will produce the following result:

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

A for...in loop is almost exactly equivalent to the following:

(expression).each do |variable[, variable...]| code end

except that a for loop doesn't create a new scope for the local variables. A for loop's expression is

separated from code by the reserved word do, a newline, or a semicolon.

Example

#!/usr/bin/ruby

(0..5).each do |i|

puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
15

CO306 Web Programming Lab

5.3 Ruby break Statement

Syntax

break

Terminates the most internal loop. Terminates a method with an associated block if called within

the block (with the method returning nil).

Example

#!/usr/bin/ruby

for i in 0..5

if i > 2 then

break

end

puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

5.4 Ruby next Statement

Syntax

next

Jumps to the next iteration of the most internal loop. Terminates execution of a block if called

within a block (with yield or call returning nil).

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
16

CO306 Web Programming Lab

Example

#!/usr/bin/ruby

for i in 0..5

 if i < 2 then

 next

 end

 puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
17

CO306 Web Programming Lab

6. Methods

Ruby methods are very similar to functions in any other programming language. Ruby methods

are used to bundle one or more repeatable statements into a single unit.

Method names should begin with a lowercase letter. If you begin a method name with an

uppercase letter, Ruby might think that it is a constant and hence can parse the call incorrectly.

Methods should be defined before calling them, otherwise Ruby will raise an exception for

undefined method invoking.

Syntax

def method_name [([arg [= default]]...[, * arg [, &expr]])]

 expr..

end

So, you can define a simple method as follows:

def method_name

 expr..

end

You can represent a method that accepts parameters like this:

def method_name (var1, var2)

 expr..

end

You can set default values for the parameters, which will be used if method is called without

passing the required parameters:

def method_name (var1=value1, var2=value2)

 expr..

end

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
18

CO306 Web Programming Lab

Whenever you call the simple method, you write only the method name as follows:

method_name

However, when you call a method with parameters, you write the method name along with the

parameters, such as:

method_name 25, 30

The most important drawback to using methods with parameters is that you need to remember

the number of parameters whenever you call such methods. For example, if a method accepts

three parameters and you pass only two, then Ruby displays an error.

Example

#!/usr/bin/ruby

def test(a1="Ruby", a2="Perl")

 puts "The programming language is #{a1}"

 puts "The programming language is #{a2}"

end

test "C", "C++"

test

This will produce the following result:

The programming language is C
The programming language is C++
The programming language is Ruby
The programming language is Perl

6.1 Return Values from Methods
Every method in Ruby returns a value by default. This returned value will be the value of the last
statement. For example:

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
19

CO306 Web Programming Lab

def test
 i = 100
 j = 10

 k = 0

end

This method, when called, will return the last declared variable k.

6.2 Ruby return Statement
The return statement in ruby is used to return one or more values from a Ruby Method.
Syntax

return [expr[`,' expr...]]

If more than two expressions are given, the array containing these values will be the return value.
If no expression given, nil will be the return value.
Example

return
OR
return 12
OR
return 1,2,3

Have a look at this example:
#!/usr/bin/ruby

def test
 i = 100
 j = 200
 k = 300
return i, j, k
end

var = test
puts var

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
20

CO306 Web Programming Lab

This will produce the following result:
100
200
300

6.3 Class Methods
When a method is defined outside of the class definition, the method is marked as private by
default. On the other hand, the methods defined in the class definition are marked as public by
default. The default visibility and the private mark of the methods can be changed by public or
private of the Module.
Whenever you want to access a method of a class, you first need to instantiate the class. Then,
using the object, you can access any member of the class.
Ruby gives you a way to access a method without instantiating a class. Let us see how a class
method is declared and accessed:
class Accounts
 def reading_charge
 end
 def Accounts.return_date
 end
end

See how the method return_date is declared. It is declared with the class name followed by a
period, which is followed by the name of the method. You can access this class method directly
as follows:

Accounts.return_date

To access this method, you need not create objects of the class Accounts.

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
21

CO306 Web Programming Lab

7. Strings

A String object in Ruby holds and manipulates an arbitrary sequence of one or more bytes,
typically representing characters that represent human language.
The simplest string literals are enclosed in single quotes (the apostrophe character). The text
within the quote marks is the value of the string:

'This is a simple Ruby string literal'

If you need to place an apostrophe within a single-quoted string literal, precede it with a
backslash, so that the Ruby interpreter does not think that it terminates the string:

'Won\'t you read O\'Reilly\'s book?'

The backslash also works to escape another backslash, so that the second backslash is not itself
interpreted as an escape character.
Following are the string-related features of Ruby.

7.1 Expression Substitution
Expression substitution is a means of embedding the value of any Ruby expression into a string
using #{ and }:
#!/usr/bin/ruby

x, y, z = 12, 36, 72
puts "The value of x is #{ x }."
puts "The sum of x and y is #{ x + y }."
puts "The average was #{ (x + y + z)/3 }."

This will produce the following result:

The value of x is 12.
The sum of x and y is 48.
The average was 40.

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
22

CO306 Web Programming Lab

8. Arrays

Ruby arrays are ordered, integer-indexed collections of any object. Each element in an array is
associated with and referred to by an index.
Array indexing starts at 0, as in C or Java. A negative index is assumed relative to the end of the
array --- that is, an index of -1 indicates the last element of the array, -2 is the next to last
element in the array, and so on.
Ruby arrays can hold objects such as String, Integer, Fixnum, Hash, Symbol, even other Array
objects. Ruby arrays are not as rigid as arrays in other languages. Ruby arrays grow
automatically while adding elements to them.
8.1 Creating Arrays
There are many ways to create or initialize an array. One way is with the new class method:
names = Array.new

You can set the size of an array at the time of creating array:

names = Array.new(20)

The array names now has a size or length of 20 elements. You can return the size of an array
with either the size or length methods:
#!/usr/bin/ruby

names = Array.new(20)
puts names.size # This returns 20
puts names.length # This also returns 20

This will produce the following result:
20
20

You can assign a value to each element in the array as follows:

#!/usr/bin/ruby
names = Array.new(4, "mac")
puts "#{names}"

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
23

CO306 Web Programming Lab

This will produce the following result:
macmacmacmac

You can also use a block with new, populating each element with what the block evaluates to:

#!/usr/bin/ruby

nums = Array.new(10) { |e| e = e * 2 }
puts "#{nums}"

This will produce the following result:

024681012141618

There is another method of Array, []. It works like this:

nums = Array.[](1, 2, 3, 4,5)

One more form of array creation is as follows:

nums = Array[1, 2, 3, 4,5]

The Kernel module available in core Ruby has an Array method, which only accepts a single
argument. Here, the method takes a range as an argument to create an array of digits:

#!/usr/bin/ruby

digits = Array(0..9)
puts "#{digits}"

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
24

CO306 Web Programming Lab

9. Ruby Object Oriented

Ruby is a pure object-oriented language and everything appears to Ruby as an object. Every
value in Ruby is an object, even the most primitive things: strings, numbers and even true and
false. Even a class itself is an object that is an instance of the Class class. This chapter will take
you through all the major functionalities related to Object Oriented Ruby.
A class is used to specify the form of an object and it combines data representation and methods
for manipulating that data into one neat package. The data and methods within a class are called
members of the class.
9.1 Ruby Class Definition
When you define a class, you define a blueprint for a data type. This doesn't actually define any
data, but it does define what the class name means, that is, what an object of the class will consist
of and what operations can be performed on such an object.
A class definition starts with the keyword class followed by the class name and is delimited with
an end. For example, we defined the Box class using the keyword class as follows:

class Box
 code
end

The name must begin with a capital letter and by convention names that contain more than one
word are run together with each word capitalized and no separating characters (CamelCase).

9.2 Define Ruby Objects
A class provides the blueprints for objects, so basically an object is created from a class. We
declare objects of a class using new keyword. Following statements declare two objects of class
Box:

box1 = Box.new
box2 = Box.new

9.3 The initialize Method
The initialize method is a standard Ruby class method and works almost same way as
constructor works in other object oriented programming languages. The initialize method is
useful when you want to initialize some class variables at the time of object creation. This
method may take a list of parameters and like any other ruby method it would be preceded by def
keyword as shown below:

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
25

CO306 Web Programming Lab

class Box
 def initialize(w, h)
 @width, @height = w, h
 end
end

9.4 The instance Variables
The instance variables are kind of class attributes and they become properties of objects once
objects are created using the class. Every object's attributes are assigned individually and share
no value with other objects. They are accessed using the @ operator within the class but to
access them outside of the class we use public methods, which are called accessor methods. If
we take the above defined class Box then @width and @height are instance variables for the
class Box.

class Box
 def initialize(w,h)
 # assign instance avriables
 @width, @height = w, h
 end
end

9.5 The instance Methods

The instance methods are also defined in the same way as we define any other method using def
keyword and they can be used using a class instance only as shown below. Their functionality is
not limited to access the instance variables, but also they can do a lot more as per your
requirement.

#!/usr/bin/ruby -w

define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end
 # instance method
 def getArea

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
26

CO306 Web Programming Lab

 @width * @height
 end
end

create an object
box = Box.new(10, 20)

call instance methods
a = box.getArea()

puts "Area of the box is : #{a}"

When the above code is executed, it produces the following result:

Area of the box is : 200

Name and Sign of Course Teacher

Prepared by: Mr. Harish D. Gadade, Govt. College of Engg., Jalgaon
27

