
Process Synchronization

Prof. Harish D.G.
Dept. of Computer and IT

College of Engineering,Pune
www.harishgadade.com

● Process Synchronization

Process Synchronization is a way to coordinate processes that

use shared data. It occurs in an operating system among

cooperating processes

Process Synchronization

P1 P2 P3

Shared Resources
(Critical Section)

● Types of Processes

○ Independent Processes

○ Cooperative processes

● Processes Synchronization problem assises in case of cooperative

processes and also resources are shared in cooperative processes.

Process Synchronization

● Critical section is a code

segment that can be accessed

by only one process at a time

● Critical section contain

shared variables which need to

be synchronized to maintain

consistency of data variables.

● In the entry section, the

process requests for entry in

the critical section

Critical Section Problem
● Problem

Do
{

Entry Section
Critical Section

Exit Section
Remaining Section

}while(TRUE);

Solution to critical section must satisfy following conditions

● Mutual Exclusion :

If a process is executing in critical section, then no other
process is allowed to execute in critical section

● Progress :

If no process is in critical section,then no other process from
outside can block it from entering in the critical section

● Bounded Waiting :

A bound must exist on the number of times that other processes
are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that
request is granted.

Solution to Critical Section

● Semaphores are integer variables that are used to solve the
critical section problem. After initialization, it can only
be accessed by two atomic operations, wait and signal.

● Initial value of S is 1

Semaphore

1. Wait

wait(S)
{
 while(S<=0);
 S--;
}

2. Sigal

signal(S)
{
 S++;
}

● Let p1,p2,p3,p4,...., pn are the processes that wants to
execute in critical section

Solution to CS Problem using Semaphore

do
{
 wait(S);
 // Critical Section
 signal(S);
 //Remaining Section
}while(TRUE);

There are two main types of semaphores i.e. counting semaphores and
binary semaphores.

● Counting Semaphores:

These are integer value semaphores and have an unrestricted value
domain. These semaphores are used to coordinate the resource access,
where the semaphore count is the number of available resources. If
the resources are added, semaphore count automatically incremented
and if the resources are removed, the count is decremented.

● Binary Semaphores:

The binary semaphores are like counting semaphores but their value is
restricted to 0 and 1. The wait operation only works when the
semaphore is 1 and the signal operation succeeds when semaphore is 0.

Types of Semaphore

We have a buffer of fixed size. A producer can produce an item and
can place in the buffer. A consumer can pick items and can consume
them. We need to ensure that when a producer is placing an item in
the buffer, then at the same time consumer should not consume any
item.

Producer-Consumer Problem

Producer Consumer

a

b

c

d

Buffer

P1 P2

Produce-Consumer problem can be solved using Semaphore

● Initialization of Semaphores:

S = 1 // Binary Semaphore
Full = 0 // Initially all slots are empty,Thus full slots are 0
Empty = N // Initially all slots are empty

Solution to Producer-Consumer Problem

do
{
 // Produce an Item
 wait(empty);
 wait(S);
 // Place in Buffer
 signal(S)
 signal(full)
}while(TRUE)

a

Buffer

P1

do
{
 wait(full);
 wait(S);
 // Remove Item from Buffer
 signal(S)
 signal(empty)
 // Consume Item
}while(TRUE)

P2

R - W : Problem
W - R : Problem
W - W : Problem
R - R : No Problem

Readers-Writers Problem

Database

R1 W1 R2 W2

Solution to Readers-Writers Problem
int rc = 0
semaphore S = 1
semaphore db = 1
void reader(void)
{
do{
 wait(S);
 rc=rc+1;
 if(rc == 1) then
 wait(db)
 signal(S);
 // Data Base
 signal(S);
 rc=rc-1;
 if (rc = = 0) then
 signal(db)
 signal(s)
 Process Data
 }while(True)
}

Database

void writer(void)
{
 do
 {
 wait(db);
 // Data Base
 signal(db);
 }while(TRUE);
}

Critical Section Solution Using Locks

do
{
 Acquire Lock
 CS
 Release Lock
}while(True);

do
{
 while(lock==1);
 lock==1;
 // Critical Section
 lock=0;
}while(TRUE);

Lock Variables

Entry Code

Exit Code

Initial Value of Lock = 0

Lock=0 - Vacant
Lock=1 - FullNote: It execute in user mode

and does not give guarantee of
Mutual Exclusion.

