Constructors and Destructors

®¢ Multiple Constructors in Class
® Constructors with Default Arguments

® Destructors



Multiple Constructors in Class

In C++, we can use multiple constructors in one class,is
called constructor overloading.

All constructors used in class have same name as of class,
only difference is in number of arguments passed to that
constructors.

For example

sample () ; // Default Constructor
sample (int x, int y);// Parameterized constructor

sample (sample & s); // Copy Constructor



Multiple Constructors in Class

class sample

{
int a;
int b;

public:
sample ()
{ a=0; b=0; }
sample (int x,int y)
{ a=x; b=y, }
sample (sample &s)
{ a=s.a; b=s.b;
}
void display()
{
cout<<a<k<" "<<b<<endl;

}




Multiple Constructors 1in

Class

class sample

{

public:

int a;

int b;

sample ()

{ a=0; b=0; }
sample (int x,int y)

{ a=x; b=y, }
sample (sample &s)

{ a=s.a; b=s.b;

}
void display()
{

cout<<a<k<" "<<b<<endl;

}

int main()

{
sample sl1;
sample s2(10,20);
sample s3(s2);
sl.display() ;
s2.display() ;
s3.display() ;

}

Output:

0O

10 20

10 20




Constructors with Default Arguments

In C++, it is possible to define constructors with default arguments, for
example, the constructor sample can be defined as
sample (int x, int y=0);
The default value of argument y is 0, then the calling statement would be
Sample S(10);
In this case, x=10 and y=0 will be assigned and passed to constructor
function.
However, the calling statement
Sample s(10,20);
Will assign x=10 and y=20; In this, the zero value will be overwritten

with wvalue 20.



Constructors with Default Arguments

class sample int main()
{ {
private: sample s1(10);
int a; sample s2(10,20);
int b; sl.display() ;
public: s2.display() ;
sample (int x,int y=0) }
{
a=x;
b=y;
}
void display () Output:
{ 10 O
cout<<a<k<" "<<b<<endl; 10 20
}
};




Destructors

A destructor, as the name implies, is used to destroy the objects that have been created by
a constructor, Like a constructor, the destructor is a member function whose name is the
same as the class name but is preceded by a tilde. For example, the destructor for the class
integer can be defined as shown below:

~integer(){ }

A destructor never takes any argument nor does it return any value. It will be invoked
implicitly by the compiler upon exit from the program (or block or function as the case may
be) to clean up storage that is no longer accessible. It is a good practice to declare destructors
in a program since it releases memory space for future use.



Destructors

class Employee
{

public:
Employee ()
{

cout<<"Constructor Invoked"<<endl;

}
~Employee ()

{
cout<<"Destructor Invoked'"<<endl;

int main()

{

//creating an object of Employee
Employee el;
//creating an object of Employee
Employee e2;

return O;




Destructors

class sample
{ int a;
int b;
public:
sample (int x,int y)

void display ()
{

cout<<a<k<" "<<b<<endl;

}
~sample ()

{

cout<<"Destructor Invoked";

int main()

{
sample s(10,20);

s.display() ;




