Making a Private Member Inheritance

®¢ We have seen how to increase the capabilities of an existing
class without modifying it

e Also we have seen that a private member of a base class can not
be inherited and therefore it is not available for the derived
class directly.

e What do we do if the private data needs to be inherited by a
derived class?

¢ This can be accomplished by modifying the wvisibility limit of
of the private member by making it public.

e This would make it accessible to all the other functions of the
program, this eliminate the advantage of data hiding.

Making a Private Member Inheritance

e C++ provides a third visibility

class sample
{
limited purpose inheritance. private:

modifier,protected, which serve a

e A member declared as protected is e
. . protected:
accessible by the member functions

within its class and any class o
public:
immediately derived from it.

e It can not be accessed by the }

functions outside these two

classes.

Making a Private Member Inheritance

Derived class visibility
00 SI000 WierInYy Public | Pricate I Protected
derivation 1 derivation l derivation
Private —— | Not inherited Not inherited i Not inherited
Protected — Protected Private ; Protected
Public — Public Private Protected

e When a protected member is inherited in public mode,it

becomes protected in derived class too.
e When a protected member is inherited in private mode,

it becomes private in derived class.

Making a Private

Not inheritable X <

class D1 : public B

class X : public D1 : protected D2

Member

Class B

Pubisc

Private

Inheritance

=~ X Not nheritable

class D2 : private B

i Private -

| Protected
'
|

Public

Multilevel Inheritance

Base class A I Grandfather
1
Intermediate
clens & Father
'
Derived class | c Child

Fig. 8.7 < Multilevel inheritance]|

" A derived class with multilevel inheritance is declared as follows:
elast Al.ooo. }s // Base claoss
class B: public A {..... }s // B derived from A
class C: public B {..... }s // C derived from B

This process can be extended to any number of levels.

Multilevel Inheritance

class student class test : public student
4 (
protected: protected:

float subl;

1'nt roll_number; okt Subis

public: public:
void 9et_“umber(iNt); void get marks(float, float);
void put_number(void); void put_marks(void);

bs

class result : public test

{
float total;

public:
void display(void);
[

Multilevel Inheritance

The class result, after inheritance from ‘grandfather’, through
‘father’ , would contains the following members

private:
float total; // own member
protected:
int roll_number; // inherited from student via test
float subl; // inherited from test
float sub2; // tnhertited from test
public:
void get_number(int); // from student via test
void put_number(void); // from student vio test
void get marks(float, float); /] from test
void put marks(void); // from test

void display(void); // own member

Multilevel Inheritance

The inherited functions put number () and put mark()can be used in
the definition of display() function

Here is a simple main() program:
void result :: display(void)
(;ntnuino
total = subl + subz; result studentl;
put_number () ; studentl.get number(111);
put_marks(); studentl.get marks(75.0, 59.5);
cout << "Total = " << total << "\n"; studentl.display();

return 0;

}

