
Standard Data Types

Harish D. Gadade
www.harishgadade.com

Standard Data Type

1. Numeric

2. Boolean

3. String

4. List

2

5. Tuples

6. Dictionary

7. Sets

1. Numeric

● Numeric data comes in two flavours

○ Int - Integer

○ Float - Fractional Numbers

● 150, -5, 564123 are values of integer type

● 10.52, -0.01, 25.23156 are values of type float

3

1. Numeric

● Operations on Numbers
○ Normal arithmetic operations : +, -, *, /
○ Note that, / always produces a float
○ Quotient and Remainder : // and %
○ Exponentiation : **

● Other Operations on Numbers
○ log(), sqrt(), sin(),.....
○ Built-in python but not available by default
○ Must include “math library”
○ from math import *

4

1. Numeric

● Operations on Numbers
○ Normal arithmetic operations : +, -, *, /
○ Note that, / always produces a float
○ Quotient and Remainder : // and %
○ Exponentiation : **

● Other Operations on Numbers
○ log(), sqrt(), sin(),.....
○ Built-in python but not available by default
○ Must include “math library”
○ from math import *

5

>>> 5+8
13
>>> 5/3
1.6666666666666667
>>> 5//2
2
>>> 5%2
1
>>> 5**2
25

● Operations on Numbers
○ Normal arithmetic operations : +, -, *, /
○ Note that, / always produces a float
○ Quotient and Remainder : // and %
○ Exponentiation : **

● Other Operations on Numbers
○ log(), sqrt(), sin(),.....
○ Built-in python but not available by default
○ Must include “math library”
○ from math import *

1. Numeric

6

>>> from math import*
>>> sqrt(4)
2.0
>>> sin(90)
0.8939966636005579
>>> log(2)
0.6931471805599453
>>>

2. Boolean Values : bool

● True, False

● Logical Operators : nor, and, or
○ Not True is False, Not False is True

○ x and y is True, if both of x, y are True

○ x or y is True, if atleast one of x,y is True

7

>>> a=True

>>> type(a)

<class

'bool'>

>>> x=False

>>> type(x)

<class

'bool'>

3. String (str)

● Strings are another important data type in Python.

● Type string is a sequence of character
○ A single character is a string of length 1

○ No separate type char

● Enclose in quotes - Single, double, triple

City = ‘Pune’

Class = “ It’s Harish Gadade’s Class”

Name = ‘ ‘ ‘ It’s name “Python Programming” ‘ ‘ ‘
8

3. String (str)

● String is a sequence of characters

● Position 0,1,2,..... N-1 for a string of length n
○ s = “ Python”

9

P y t h o n

0 1 2 3 4 5

-6 -5 -4 -3 -2 -1

● Positions -1,-2, count backwards from end
● There are several operators such as slicing [:], concatenation (+) and

repetition (*)

3. String (str)

● String is a sequence of characters

● Position 0,1,2,..... N-1 for a string of length n
○ s = “ Python”

10

P y t h o n

0 1 2 3 4 5

-6 -5 -4 -3 -2 -1

● Positions -1,-2, count backwards from end
● There are several operators such as slicing [:], concatenation (+) and

repetition (*)

● Strings are Immutable

4. List
● A List can contain same types of Items. Alternatively, a List can also contain different

types of items.

● To declare a List, we need to separate the items using commas and enclose them within

a square bracket([])

● Similar to string data type, list also has +, * and slicing [:] operators for

concatenation, repetition and sublist respectively.

● List is Mutable

11

4. List

● Basic Operations
○ Display List

○ Concatenation

○ Repetition

○ Sublist

12

4. List

● Basic Operations
○ Display List

○ Concatenation

○ Repetition

○ Sublist

13

>>> a = [1, ”Vihaan”, 5.6]

>>> b = [“Pune”, 10]

4. List

● Basic Operations
○ Display List

○ Concatenation

○ Repetition

○ Sublist

14

>>> a = [1, ”Vihaan”, 5.6]

>>> b = [“Pune”, 10]

>>> a

a = [1, ”Vihaan”, 5.6]

>>> b

 [“Pune”, 10]

Displaying a List

4. List

● Basic Operations
○ Display List

○ Concatenation

○ Repetition

○ Sublist

15

>>> a = [1, ”Vihaan”, 5.6]

>>> b = [“Pune”, 10]

>>> a + b

a = [1, ”Vihaan”, 5.6, “Pune”, 10]

Concatenation

4. List

● Basic Operations
○ Display List

○ Concatenation

○ Repetition

○ Sublist

16

>>> a = [1, ”Vihaan”, 5.6]

>>> b = [“Pune”, 10]

>>> b * 3

[“Pune”, 10 , “Pune”, 10 , “Pune”, 10]

Repetition

4. List

● Basic Operations
○ Display List

○ Concatenation

○ Repetition

○ Sublist

17

>>> a = [1, ”Vihaan”, 5.6]

>>> b = [“Pune”, 10]

>>>a [0 : 1]

[1]

>>> a [1 : 3]

[“Vihaan”, 5.6]

Sub-List

5. Tuple
● Similar to list, a tuple is also used to store sequence of items.

● Like a list, a tuple consists of items separated by commas.

● However, tuples are enclosed within parentheses rather than square

bracket.

● Difference between List and Tuples

○ In List, items are enclosed within square brackets [] whereas in tuples, items

are enclosed within parentheses ()

○ List are mutable whereas Tuples are immutable. Tuples are read only lists.

18

5. Tuple

● Examples

19

>>> a=(10,"Vihaan",5.6,"Jalgaon")

>>> a

(10, 'Vihaan', 5.6, 'Jalgaon')

>>> a[1]="Rituja"

Traceback (most recent call last):

File "<pyshell#4>", line 1, in

<module> a[1]="Rituja"

TypeError: 'tuple' object does not

support item assignment

6. Dictionary
● Dictionary is an unordered collection of key-value pairs.

● The order of elements in a dictionary is undefined but we can iterate

over the following:

○ The Key

○ The Value

○ The item (key - Value pairs) in a dictionary

● Items are enclosed in a curly-braces { } and separated by comma (,).
● A colon (:) is used to separate key from value.
● A key inside the square bracket [] is used to access the dictionary

items
● Dictionary values are mutable

20

6. Dictionary

● Example:

21

>>> dict={1:"Jalgaon","two":"Pune"}

>>> dict

{1: 'Jalgaon', 'two': 'Pune'}

>>> dict[3]="Mumbai"

>>> dict

{1: 'Jalgaon', 'two': 'Pune', 3: 'Mumbai'}

6. Dictionary

● Example:

22

>>> dict={1:"Jalgaon","two":"Pune"}

>>> dict

{1: 'Jalgaon', 'two': 'Pune'}

>>> dict[3]="Mumbai"

>>> dict

{1: 'Jalgaon', 'two': 'Pune', 3: 'Mumbai'}

>>> dict.keys()

dict_keys([1, 'two', 3])

>>> dict.values()

dict_values(['Jalgaon', 'Pune',

'Mumbai'])

>>>

7. Sets
● An unordered collection of data is known as set.
● A set does not contain duplicate values or elements and it is

non-subscriptable
● Union, intersection, difference and symmetric difference are

the some operations which can performed on sets.
○ Union: All elements from two sets. Operator used is |
○ Intersection: Display common elements in two sets. Operator used

is &
○ Difference: Display elements which are present in first set not

in other set. Operator used is -
○ Symmetric Difference: returns elements which are present in

either set but not in both. Operator used is ^
23

7. Sets

● Example:

24

>>> a = set ([1,2,3,1,2,8,5,4])

>>> b = set ([1,9,3,2,5])

>>> a

{1, 2, 3, 4, 5, 8}

>>> b

{1, 2, 3, 5, 9}

>>> intersection = a & b

>>> intersection

{1, 2, 3, 5}

>>> union = a | b

>>> union

{1, 2, 3, 4, 5, 8, 9}

>>>

7. Sets

● Example:

25

>>> a = set ([1,2,3,1,2,8,5,4])

>>> b = set ([1,9,3,2,5])

>>> a

{1, 2, 3, 4, 5, 8}

>>> b

{1, 2, 3, 5, 9}

>>> diff = a - b

>>> diff

{8, 4}

>>> symm_diff = a ^ b

>>> symm_diff

{4, 8, 9}

Type() Function

● type() function is a built-in function which returns the datatype of

any arbitrary object.

● type() function can take anything as an argument and returns its

data type such as integer, strings, dictionaries, lists, classes,

modules, tuples, function etc

26

Type() Function

● type() function is a built-in function which returns the datatype of

any arbitrary object.

● type() function can take anything as an argument and returns its

data type such as integer, strings, dictionaries, lists, classes,

modules, tuples, function etc

27

>>> x=10
>>> type(x)
<class 'int'>

>>> import os
>>> type(os)
<class 'module'>

>>> type("Hello")
<class 'str'>

>>> tup=(1,2,3)
>>> type(tup)
<class 'tuple'>

>>> lst=[1,2,3]
>>> type(lst)
<class 'list'>

