
CT(IF)-21003 Fundamentals OS

Prof. Harish D.G.
Dept. of Computer and IT

College of Engineering,Pune
www.harishgadade.com

Assignments/Quizzes followed by Oral 40 Marks

End Semester Exam 60 Marks

Introduction to Operating Systems

● Definitions:

○ Operating Systems is a System Software

○ It Works between the users and computer Hardwares like CPU,I/O Devices, and Memory

○ Operating system is a Interface between users and computer Hardwares

Introduction to Operating Systems

● Definitions:

○ Operating Systems is a System Software

○ It Works between the users and computer Hardwares like CPU,I/O Devices, and Memory

○ Operating system is a Interface between users and computer Hardwares

Users

CPU I/O Devices RAM

Introduction to Operating Systems

● Definitions:

○ Operating Systems is a System Software

○ It Works between the users and computer Hardwares like CPU,I/O Devices, and Memory

○ Operating system is a Interface between users and computer Hardwares

Users

CPU I/O Devices RAM

Users

CPU I/O Devices RAM

Operating Systems

Introduction to Operating Systems

● Functionality of Operating Systems:

○ Resource Management

○ Process Management (CPU Scheduling)

○ Storage Management(HDD)

○ Memory Management(RAM)

○ Security

Users

CPU I/O Devices RAM

Operating Systems

System Programs

Application Programs

CPU I/O Devices RAM

Operating Systems

System Programs

User_1 User_2 User_3 User_n

System Programs

Application Programs

CPU I/O Devices RAM

Operating Systems

System Programs

● Programs are of two types

○ Application Programs

○ System Programs

● System Programs provide a convenient

environment for program developments

and execution.

● Application programs are basically

designed for specific task.

● System programs are basically

operates on computer hardware OR

Provide a platform to application

programs to run

User_1 User_2 User_3 User_n

System Programs
System Programs can be divided into following categories

● File Management

● Status Information

● File Modification

● Programming Language Support

● Program Loading and Execution

● Communication

System Programs
● File Management

○ Create

○ Delete

○ Copy

○ Rename

○ Print

○ Dump

System Programs
● Status Information

○ Ask systems for

■ Date, Time

■ Amount of Available memory or Disk Space

■ Number of Users

■ Detailed Performance

■ Logging and Debugging Information etc

System Programs
● File Modifications

○ Several Text Editors may be available to create and
modify the content of files stored on disk or other
storage devices

○ There may be a special command to search content of the
files.

System Programs
● Programming Language Support

○ Compiler

○ Assembler

○ Debugger

○ Interpreter

System Programs
● Program Loading and Execution

○ Once the program is assembled or compiled, it must be
loaded into main memory to be executed

○ The system may provide

■ Absolute Loader

■ Relocate Loader

■ Linking Editors, and

■ Overlay Loader

System Programs
● Communication

○ These programs provide mechanism for:

■ Creating virtual connections among processes, users,
and computer systems

■ Allowing users to send messages to one another’s
screens.

■ To browse web pages

■ To send electronic-mail messages

■ To log in remotely or to transfer files from one
machine to another machine.

Source
Program

Program Execution Process

Translators
(Assembler /
Compiler /
Interpreter)

Object
Program Linker

Executable
Code

Loader

Object Program
Ready for
Execution

Memory

Compiler/Assembler

● A compiler is a program that translates a source program written
in some high-level programming language (such as Java) into
machine code.

● The generated machine code can be later executed many times
against different data each time.

● A compiler is a tool which has the ability to read the source code
and translate it to object level code.

● The output of the compiled code is referred to as the object code
or sometimes called the object module. (It is to be noted that
this object file/object module is not related to OOP).

C Program Compiler Object File

Human Readable Format Computer Understandable format

Why do we need compiler to execute the program?

● Because computer can't understand the source code directly.
It will understand only object level code.

● Source codes are human readable format but the system cannot
understand it.

● So, the compiler is intermediate between human readable
format and machine-readable format.

Interpreter

● Converts high level

language to machine level

language

● Read Line-by-line

● If an error is found on any

line, the execution stops

till it is corrected.

● e.g. Phyton, Ruby, Perl,

PHP and Matlab.

● Advantage : It is executed

line by line which helps

users to find errors easily.

● Disadvantage : It takes more
time to execute successfully
than compiler.

Interpreter
● All high level languages need to be converted to machine code

so that the computer can understand the program after taking

the required inputs.

● The software by which the conversion of the high level

instructions is performed line-by-line to machine level

language, other than compiler and assembler, is known as

INTERPRETER.

● If an error is found on any line, the execution stops till it

is corrected. This process of correcting errors is easier as

it gives line-by-line error but the program takes more time

to execute successfully.

Interpreter

Top Interpreters according to the computer languages –

● Phyton- CPhyton, PyPy, Stackless Phyton, IronPhyton

● Ruby- YARV, Ruby MRI (CRuby)

● JAVA- HotSpot, OpenJ9, JRockIt

● Kotlin- JariKo

Linker

Translators

Obj1

Obj2
Linker Obj1, Obj2 Loader

Memory

● Static Linking
● Dynamic Linking

Static Linker
#include<stdio.h>
{

sqrt(4);
}

Static Linker
#include<stdio.h>
{

sqrt(4);
}

100010101011
010110101010
110101

Call function sqrt()

Static Linker
#include<stdio.h>
{

sqrt(4);
}

100010101011
010110101010
110101

Call function sqrt()

Libraries

101010
100111
010100
010101
001010

sqrt()

Static Linker
#include<stdio.h>
{

sqrt(4);
}

100010101011
010110101010
110101

Call function sqrt()

Libraries

101010
100111
010100
010101
001010

Linker

100010101011010110101010110
101

sqrt()

Static Linker
#include<stdio.h>
{

sqrt(4);
}

100010101011
010110101010
110101

Call function sqrt()

Libraries

101010
100111
010100
010101
001010

Linker

100010101011010110101010110
101

101010100111010100010101001010

sqrt()

Code of sqrt function is included in
final executable file

Static Linker 1
exe file generated

4
Again compilation needed so
that exe file include updated
sqrt() function

Dynamic Linker
#include<stdio.h>
{

sqrt(4);
}

100010101011
010110101010
110101

Call function sqrt()

Libraries

101010
100111
010100
010101
001010

Linker

100010101011010110101010110101
Address of sqrt() function in memory
0x2EA126

sqrt()

Memory Addresses, where sqrt() function is
loaded, included in final executable file.

sqrt()
function
Library

0x2EA126

Dynamic Linker

● Static Linker

○ Windows - .lib (Library)

○ Linux - .a (Archive)

● Dynamic Linker

○ Windows - .dll (Dynamic Link Library)

○ Linux - .so (Shared Objects)

Loader

Translators

Obj1

Obj2
Linker Obj1, Obj2 Loader

Memory

Loader
In computer systems a loader is the part of an operating system that
is responsible for loading programs and libraries. It is responsible
for initiating the execution process

● Process / Functions of Loader:
○ Allocation: The space for program is allocated in the main

memory by calculating the size of the program
○ Loading : Brings the object program in to the memory for

execution
○ Relocation : When program is loaded from secondary memory to

primary memory, its address gets change,this address will be
handled by the loader.

○ Linking : Which combines two or more separate object programs
and supplies the necessary information.

Linker Vs Loader
Linker Loader

Main function of linker is to
generate executable file

To load executable file into main
memory

The linker takes input of object
code generated by compiler/
assembler

And the loader takes input of
executable files generated by
linker

Linking can be defined as process
of combining various pieces of
codes and source code to obtain
executable code.

Loading can be defined as process
of loading executable codes to main
memory for further execution.

Another use of linker is to combine
all object modules.

It helps in allocating the address
to executable codes/files.

