
Constructors and Destructors
● Encapsulations

● Constructors

○ Default Constructors

○ Parameterized Constructors

○ Copy Constructors

○ Dynamic Constructors

● Multiple Constructors in Class

● Constructors with Default Arguments

● Destructors

Encapsulation

● In normal terms Encapsulation is defined as wrapping up

of data and information under a single unit. In Object
Oriented Programming, Encapsulation is defined as
binding together the data and the functions that
manipulates them.

Encapsulation
class Encapsulation

{ private:

 int x;

 public:

 void getdata(int a)

 {

 x =a;

 }

 int putdata()

 {

 cout<<x;

 }

};

int main()

{

 Encapsulation obj;

 obj.getdata(5);

 obj.putdata();

 return 0;

}

Constructors
There are mainly four types of COnstructors

● Default Constructors

● Parameterized Constructors

● Copy Constructors

● Dynamic Constructors

Constructors
The constructor function have some special characteristics

● They should be declared in public section

● They are invoked automatically when the objects are created.

● They do not have return types, not even void and therefor, they

can not return values.

● They can not be inherited, through a derived class can call the

base class constructor.

● Like other C++ functions, they can have default arguments.

● They make ‘implicit calls’ to the operator new and delete when

memory allocation is required.

● When a constructor is declared for a class, initialization of the

class object becomes mandatory.

Default Constructors
A constructor is a special member function whose task is to

initialize objects of its class.It is special because its name is

same as class name. A constructor is invoked whenever objects of

its class is created

When a class contains a
constructor, it is guaranteed
that an object created by the
class will be initialized
automatically. For example,

integer int1

Parameterized Constructors
A constructor that can take arguments are called parameterized

constructors

Parameterized Constructors

Parameterized Constructors

Parameterized Constructors
#include<iostream>
using namespace std;
class integer
{
 int m,n;
 public:
 integer(int,int);
 void display()
 {
 cout<<"m = "<<m<<"\n";
 cout<<"n = "<<n<<"\n";
 }
};

integer::integer(int x,int y)
{
 m=x; n=y;
}

int main()
{
 //Constructor call Implicitly
 integer int1(0,100);

 //Constructor call Explicitly
 integer int2=integer(25,75);

 cout<<"\nObject1"<<"\n";
 int1.display();

 cout<<"\nObject2"<<"\n";
 int2.display();
 return 0;
}

Copy Constructors

Copy Constructors

Copy Constructors
Consider the class integer,

integer(integer &i);

So, the copy constructor is used to declare and initialize an object

from another object, for example, the statement

Integer I2(I1);

Would define the object I2 and at the same time initialize it to the

values of I1. Another form of this statement is

Integer I2=I1

The process of initializing through copy constructor is known as Copy

initialization.

Copy Constructors

Remember, the statement

I2=I1

Will not invoke the copy constructor.

However, if I1 and I2 are objects, this statement is legal and

simply assign the values of I1 to I2, member-by-member. This is

the task of overloaded operator(=).

Copy Constructors
class integer

{ int id;

 public:

 integer(int a)

 { id=a; }

 integer(code &x)

 { id=x.id; }

 void display()

 { cout<<id<<endl;

 }

};

int main()

{ integer A(100);

 integer B(A);

 integer C=A;

 integer D;

 D=A;

 A.display();

 B.display();

 C.display();

 D.display();

 return 0;

}

Dynamic Constructors

● Dynamic constructor is used to allocate the memory to
the objects at the run time.

● Memory is allocated at run time with the help of 'new'
operator.

● By using this constructor, we can dynamically
initialize the objects.

Dynamic Constructors
class sample

{

 char* p;

public:

 // default constructor

 // Also called Dynamic Constructor

 sample()

 { // allocating memory at run time

 p = new char[20];

 p = "College of Engineering Pune";

 }

void display()

 { cout << p << endl;

 }

};

int main()

{ sample obj;

 obj.display();

}

Dynamic Constructors
class sample {

 int* p;

public:

 sample()// default constructor

 { // allocating memory at run time

 // and initializing

 p = new int[3]{ 1, 2, 3 };

 for (int i = 0; i < 3; i++) {

 cout << p[i] << " ";

 }

 cout << endl;

 }

};

int main()

{

 // five objects will be created

 // for each object

 // default constructor would be called

 // and memory will be allocated

 // to array dynamically

 sample* ptr = new sample[5];

}

