Constructors and

Encapsulations
Constructors
© Default Constructors
© Parameterized Constructors
O Copy Constructors
© Dynamic Constructors
Multiple Constructors in Class
Constructors with Default Arguments

Destructors

Destructors



Encapsulation

In normal terms Encapsulation is defined as wrapping up
of data and information under a single unit. In Object
Oriented Programming, Encapsulation 1s defined as
binding together the data and the functions that

manipulates them.




Encapsulation

class Encapsulation
{ private:
int x;

public:

void getdata(int a)

{
X =a;
}
int putdata()

{

coutLx;

int main ()

{

Encapsulation obj;

obj.getdata(5) ;

obj.putdata() ;

return O;




Constructors

There are mainly four types of COnstructors
e Default Constructors

e Parameterized Constructors

® Copy Constructors

e Dynamic Constructors



Constructors

The constructor function have some special characteristics

e They should be declared in public section

e They are invoked automatically when the objects are created.
¢ They do not have return types, not even void and therefor,

can not return wvalues.

e They can not be inherited, through a derived class can call the

base class constructor.

e Like other C++ functions, they can have default arguments.

e They make ‘implicit calls’ to the operator new and delete when

memory allocation is required.

®¢ When a constructor is declared for a class, initialization of the

class object becomes mandatory.



Default Constructors

A constructor

is a special member function whose task is to

initialize objects of its class.It is special because its name 1is

same as class name.

its class is created

class integer
[

intm, n;
public:
integer(void);
hs
integer ::
{
m=0; n=0;

}

integer(void)

// constructor declared

/| constructor defined

A constructor is invoked whenever objects of

When a
constructor,

class

contains a
it is guaranteed

that an object created by the

class will

automatically.

be initialized
For example,

integer intl




Parameterized Constructors

A constructor that can take arguments are called parameterized

constructors

class integer

|
int m, n;
public:
integer(int x, int y); // parometerized constructor
b
integer :: integer(int x, int y)
{

RE=xEIR® ¥y



Parameterized Constructors

When a constructor has been parameterized, the object declaration statement such as
integer intl;

may not work. We must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in two ways:

® By calling the constructor explicitly.
® By calling the constructor implicitly.



Parameterized Constructors

The following declaration illustrates the first method:

integer intl = integer(0,100); // explicit coll

This statement creates an integer object int1 and passes the values (0 and 100 to it. The
second is implemented as follows:

integer int1(0,100); [/ implicit call

This method, sometimes called the shorthand method, is used very often as it is shorter,
looks better and iz easy to implement.



Parameterized Constructors

#include<iostream> int main ()
using namespace std; {
class integer //Constructor call Implicitly
{ integer intl (0,100);
int m,n;
public: //Constructor call Explicitly
integer (int,int) ; integer int2=integer (25,75) ;
void display ()
{ cout<<"\nObjectl"<<"\n";
cout<<'"'m = "<<m<<"\n"; intl.display() ;
cout<<"n = "<<n<<"\n";
} cout<<"\nObject2"<<"\n";
}; int2.display() ;
return O;
integer: :integer (int x,int y) }
{
m=x; n=y;
}




Copy Constructors

The parameters of a constructor can be of any type except that of the class to which it
belongs. For example,

aaaaa

L L



Copy Constructors

However, a constructor can accept a reference to its own class as a parameter. Thus, the
statement

-----

| H

i8 valid. In such cases, the constructor is called the copy constructor.



Copy Constructors

Consider the class integer,

integer (integer &i);

So, the copy constructor is used to declare and initialize an object
from another object, for example, the statement

Integer I2(I1);,
Would define the object I2 and at the same time initialize it to the
values of Il. Another form of this statement is

Integer I2=I1
The process of initializing through copy constructor is known as Copy

initialization.




Copy Constructors

Remember, the statement
I2=I1
Will not invoke the copy constructor.
However, if Il and I2 are objects, this statement is legal and

simply assign the values of I1 to I2, member-by-member. This is

the task of overloaded operator (=).




Copy Constructors

class integer
{ int id;
public:

integer (int a)
{ id=a; }
integer (code &x)
{ id=x.id; }
void display ()

{ cout<<id<<endl;

}

int main()

{

integer A(100) ;
integer B(A) ;
integer C=A;
integer D;

D=A;
A.display() ;
B.display() ;
C.display() ;
D.display() ;

return O;




Dynamic Constructors

Dynamic constructor is used to allocate the memory to
the objects at the run time.

Memory is allocated at run time with the help of 'new'
operator.

By using this constructor, we can dynamically
initialize the objects.




Dynamic Constructors

class sample void display ()
{ { cout << p << endl;
char* p; }
public: };
// default constructor
// Also called Dynamic Constructor int main ()
sample () { sample obj;
{ // allocating memory at run time obj.display () ;
p = new char[20]; }

p = "College of Engineering Pune";




Dynamic Constructors

class sample {
int* p;
public:

sample () // default constructor

{ // allocating memory at run time

// and initializing

P
for (int 1 = 0; 1 < 3;

cout << p[i] <« " ";

}
cout << endl;

new int[3]{ 1, 2, 3 };

i++) {

4

int main()

{

// five objects will be created

// for each object

// default constructor would be called
// and memory will be allocated

// to array dynamically

sample* ptr = new sample[5];




