CO451 Distributed Operating System

TH: 03 hrs Max Marks: 100 TH + 50 PR PR: 2 hrs Credits 03+01

ISA Tool (Marks : 10)

- 1. Attendance
- 2. Class Notebook
- 3. Surprise Test
- 4. MiniProject/Case Study

Self-study:

- Process Management
- Distributed File System

Mr. Harish D. Gadade Asst. Professor in Computer Engg. GGovtieg Gelleggagof Engg., Jalgaon

Mr. Harish D. Gadade

What is Distributed Computing System?

Computer Architectures consisting of interconnected, multiple processors are of basically two types

- Tightly Coupled System
- Loosely Coupled System

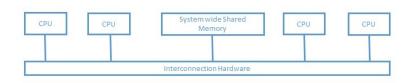


Figure: Tightly Coupled System

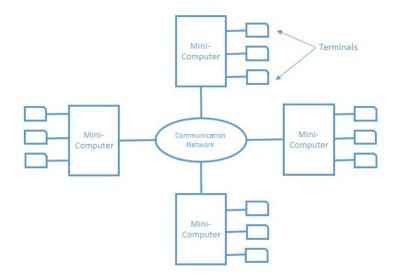
Figure: Loosely Coupled System

Mr. Harish D. Gadade

Evolution of DCS

- Large Size Computer
- Batching
- Job Sequencing
- Multiprogramming
- Time Sharing
- Mini Computers and so on

Distributed Computing System Models



Various models are used for building distributed computing systems. These models can be broadly classified into five categories:

- Minicomputer Model
- Workstation Model
- Workstation-Server Model
- Processor-Pool Model
- Hybrid Model

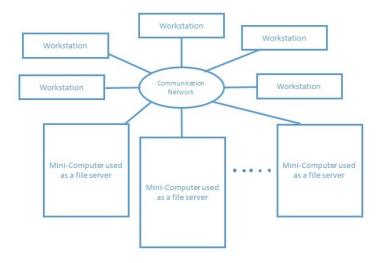
Minicomputer Model

Figure: A DCS based on the Minicomputer Model

Mr. Harish D. Gadade

Workstation Model

Figure: A DCS based on the Workstation Model


Issues:

- How does the system find an idle workstation?
- How is a process transferred from one workstation to another to get it executed?
- What happens to a remote process if a user logs onto a workstation that was idle until now and being used to execute

Mr. Harish D. Gadade of another workstation?

Workstation-Server Model

Figure: A DCS based on the Workstation-Server Model

Mr. Harish D. Gadade

Processor-Pool Model

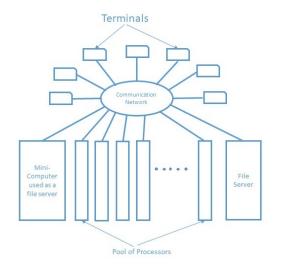


Figure: A DCS based on the Processor-Pool Model

Mr. Harish D. Gadade

$\mathsf{Hybrid}\ \mathsf{Model} = \mathsf{Workstation}\mathsf{-}\mathsf{Server} + \mathsf{Processor}\mathsf{-}\mathsf{Pool}$

Why are Distributed Systems Gaining Popularity?

Distributed Systems Gaining Popularity because...

- Inherently Distributed Applications
- Information Sharing among Distributed Users
- Resource Sharing
- better Price Performance Ratio
- Shorter Response Time and Higher Throughput
- Higher Reliability
- Extensibility and Incremental Growth
- Better Flexibility in Meeting User's Needs

What is Distributed Operating Systems?

What is Operating System?

A program that controls the computer system resources and provides interface to its user.

Therefor, primary tasks of OS are;

- To present users with a virtual machine that is easier to program.
- To manage the various resources of the system.

The Operating Systems commonly used for DCS can be classified on

- Network Operating System
- Distributed Operating System

Features used to differentiate NOS and DOS are:

- 1. System Image
- 2. Autonomy
- 3. Fault Tolerance Capability

Mr. Harish D. Gadade

Issues In Designing a Distributed Operating System

- 1. Transparency
- 2. Reliability
- 3. Flexibility
- 4. Performance
- 5. Scalability
- 6. Heterogeneity
- 7. Security
- 8. Emulation of Existing System

Issues In Designing a Distributed Operating System I

1. Transparency

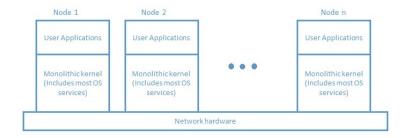
- 1.1 Access Transparency
- 1.2 Location Transparency
- 1.3 Replication Transparency
- 1.4 Failure Transparency
- 1.5 Migration Transparency
- 1.6 Concurrency Transparency
- 1.7 Performance Transparency
- 1.8 Scaling Transparency

Issues In Designing a Distributed Operating System II

- 2. Reliability
 - 2.1 Fault Avoidance
 - 2.2 Fault Tolerance
 - 2.3 Fault Detection and Recovery

Issues In Designing a Distributed Operating System III

- 3. Flexibility
 - 3.1 Ease of Modification
 - 3.2 Ease of Enhancement


The most important design factors that affects the flexibility of a distributed operating system is the model used for designing its kernel.Two commonly used models for kernel design in distributed operating system are;

- Monolithic Kernel Model
- Microkernel Model

Issues In Designing a Distributed Operating System IV

Monolithic Kernel

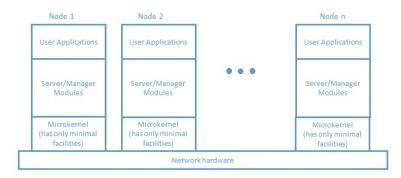


Figure: Monolithic Kernel Model

Issues In Designing a Distributed Operating System V

Micro Kernel Model

Figure: Monolithic Kernel Model

Issues In Designing a Distributed Operating System VI

4. Performance

Some design principles considered useful for better performance as follows

Batch if Possible

- Cache whenever Possible
- Minimize copying of Data
- Minimize Network Traffic

Issues In Designing a Distributed Operating System VII

5. Scalability

Some guiding principles for designing Scalable Distributed Operating Systems are as follows

- Avoid Centralized Entities
- Avoid Centralized Algorithms
- Perform Most Operations on Client Workstations
- 6. Heterogeneity
- 7. Security

Enforcement of security needs following requirements

- It should be possible for the sender to know that the message was received by the intended receiver
- It should be possible for receiver to know that the message was sent by the genuine sender
- It should be possible for both sender and receiver the message were not changed while it was in transfer.