
Deadlock

Prof. Harish D.G.
Dept. of Computer and IT

College of Engineering,Pune
www.harishgadade.com



● What is Deadlock

● Deadlock Characterization

○ Necessary Conditions

○ Resource Allocation Graph

● Methods to handle deadlock

○ Deadlock Prevention

○ Deadlock Avoidance

○ Deadlock Detection and Recovery

Deadlock



A process in operating system uses resources in the following way. 

1) Requests a resource 

2) Use the resource 

3) Releases the resource

Deadlock

● What is Deadlock?

Deadlock is a situation where a set 

of processes are blocked because 

each process is holding a resource 

and waiting for another resource 

acquired by some other process.



Before we discuss various methods for dealing with the deadlock 
problems, we shall describe features that characterize the 
deadlock

1. Necessary Conditions:

Followings are the necessary and sufficient condition for 
Deadlock;

1) Mutual Exclusion 

2) No Preemption 

3) Hold and Wait

4) Circular Wait

Deadlock Characterization



2. Resource-Allocation Graph:

● Deadlock can be described more precisely in terms of Directed 
Graph called a System Resource Allocation Graph.

● RAG is a set of vertices (V) and edges(E)

Set of vertices are Set of processes and set of resources.

P = { P1, P2, P3, . . . Pn}

R = { R1, R2, R3, . . . Rn}

Set of Edges are Request edge and Assignment Edge

Pi    Rj
Rj     Pi

Deadlock Characterization



2. Resource-Allocation Graph:

Example:

Deadlock Characterization

.
P1

R1

P2 P3

:

.
R2

R3

Proces
ses

Allocation
R1 R2 R3

Request
R1 R2 R3

Available
R1 R2 R3

P1 0 0 1 1 0 0 0 0 0

P2 1 0 1 0 1 0

P3 0 1 0 0 0 1

This RAG contains Deadlock



2. Resource-Allocation Graph:

Example:

Deadlock Characterization

:
P1

R1

P3

P2

.
R2

Proces
ses

Allocation
R1 R2 

Request
R1 R2 

Available
R1 R2

P1 0   1 1    0 0 0 0

P2 1   0 0   0

P3 1   0 0   1 

This RAG contains No Deadlock



2. Resource-Allocation Graph:

 Therefore we can conclude that

● If Graph contains no cycle, then No DEADLOCK

● If Graph contain a cycle;

○ If only one instances per resource type, then DEADLOCK

○ If several instance per resource type, then there may have 

a possibility of DEADLOCK.

Deadlock Characterization



Followings are the various methods to handle deadlock;

1) Deadlock Ignorance 

2) Deadlock Prevention 

3) Deadlock Avoidance

4) Deadlock Detection and Recovery

1. Deadlock Ignorance

Ignore by adding code to Operating System or simply restart 
your machine

Methods to Handle Deadlock



2. Deadlock Prevention

Try to find solution before deadlock occurs

Necessary Conditions:

a) Mutual Exclusion

b) No Preemption

c) Hold and Wait

d) Circular aait

● Deadlock prevention says,try to remove or make false all four 
conditions OR at least try to remove or make false any one of 
the conditions.

Methods to Handle Deadlock



2. Deadlock Prevention

● To prevent Deadlock-
○ Make mutual Exclusion False

■ By Just sharing resources but it is not possible in 
some resources like printer as it is non sharable.

○ Try to make No-Preemption False

■ Means Preemption is TRUE, can use Time Quantum Method

○ Make Hold and Wait False
■ Try to do No Hold and Wait

○ Make Circular Wait False
■ To remove Circular wait,just give the numbering to all 

resources

Methods to Handle Deadlock



3. Deadlock Avoidance

● Simplest and most useful model requires that each process 
declares maximum number of resources that it may need.

● Deadlock avoidance Algorithm dynamically examines the 
resources allocation can never be a circular wait condition.

● Basic Fact:
○ If a system is in Safe State, No Deadlock
○ If a System is in Unsafe State, Possibility of Deadlock.

● Avoidance:- Ensure that a system will never enter in Unsafe 
State.

Methods to Handle Deadlock



3. Deadlock Avoidance

● Allow the system to enter into deadlock State
● Deadlock Detection Algorithms

○ Single Instance 
○ Multiple Instance

● For Single Instance, Wait-for-Graph Algorithm is used
● For Multiple Instance, Banker’s Algorithm is used
● In Wait-for-Graph, if cycle exists, then we can say that, there is 

a Deadlock but in multiple instance, if cycle exists, there may or 
may not be a Deadlock.

Methods to Handle Deadlock



3. Deadlock Avoidance

A. Safe State

Example: Suppose there as four processes in execution with 12 
instances of a resource R in a system.

Methods to Handle Deadlock

Processes Max Need Current 
Allocation

P1 8 3

P2 9 4

P3 5 2

P4 3 1

With the reference to current 
allocation, Is system Safe? If so, 
what is the safe state sequence.



3. Deadlock Avoidance

● Example: Deadlock Avoidance Using Banker,s Algorithm

Total resources are A=10,B=5, C=7 and five processes with 
following need. Find safe sequence to avoid deadlock.

Methods to Handle Deadlock

Processes Allocation
A   B   C

Maximum
A   B   C

Current Work(Available)
A   B   C

Remaining Need(Max - Alloc)
A   B   C

P0 0   1   0 7   5   3 3   3   2 7   4   3

P1 2   0   0 3   2   2 5   3   2 1   2   2

P2 3   0   2 9   0   2 7   4   3 6   0   0

P3 2   1   1 4   2   2 7   4   5 2   1   1

P4 0   0   2 5   3   3 7   5   5 5   3   1

7   2   5 10   5   7



3. Deadlock Avoidance

Current Work = Total - Total Allocation

For A, CW = 10 - 7 = 3

For B, CW = 5 - 2 =3

For C, CW = 7 - 2 = 2

I.e. (A B C) = (3 3 2)

Methods to Handle Deadlock

Banker’s Algorithm(Deadlock Avoidance/Detection)
   
   Needi <= Work, Work = Work + Allocation

P0,  7 4 3 <= 3 3 2, Not TRUE
P1,  1 2 2 <= 3 3 2, TRUE, then W = 3 3 2 + 2 0 0 = 5 3 2
P2,  6 0 0 <= 5 3 2, Not TRUE
P3,  2 1 1 <= 5 3 2, TRUE, then W = 5 3 2 + 2 1 1 = 7 4 3



3. Deadlock Avoidance

Methods to Handle Deadlock

P4,  5 3 1 <= 7 4 3, TRUE, then W = 7 4 3 + 0 0 2 = 7 4 5
P0,  7 4 3 <= 7 4 5, TRUE, then W = 7 4 5 + 0 1 0 = 7 5 5
P2,  6 0 0 <= 7 5 5, TRUE, then W = 7 5 5 + 3 0 2 = 10 5 7

Thus,
      The Safe Sequence is = P1, P3, P4, P0,P2
Therefor, in this sequence, deadlock will not occur.



4. Deadlock Detection and Recovery

Methods to Handle Deadlock

● Allow the system to enter into deadlock State
● Deadlock Detection Algorithms

○ Single Instance 
○ Multiple Instance

● For Single Instance, Wait-for-Graph Algorithm is used
● For Multiple Instance, Banker’s Algorithm is used
● In Wait-for-Graph, if cycle exists, then we can say that, 

there is a Deadlock but in multiple instance, if cycle 
exists, there may or may not be a Deadlock.



4. Deadlock Detection and Recovery

Methods to Handle Deadlock

P1

R1

R2 R3P4

P2 P3

Resource Allocation Graph (RAG)

P1

P2

P3

P4



4. Deadlock Detection and Recovery

Methods to Handle Deadlock

P1

R1

R2 R3P4

P2 P3

Resource Allocation Graph (RAG)

Processes Max Need

R1 R2 R3

Current 
Allocation
R1 R2 R3

P1 1 1 0 0 0 0

P2 0 0 1 1 0 0 

P3 0 0 0 0 0 1

P4 0 0 1 0 1 0


