
Classes and Objects
● Private Member Functions

● Memory Allocation for Objects

● Static Data Members

● Static Member Functions

● Array of Objects

● Objects as a Function Arguments

● Friendly Function

Private Member Functions

Private Member Functions

Memory Allocation for Objects

Static Data Members
A data members of a class can be qualified as static. A static member
variables has certain special characteristics;
● It is initialized to zero when the first object of its class is

created. No other initialization is permitted.
● Only one copy of that member is created for the entire class and is

shared by all objects of that class, no matter how many objects are
created.

● It is visible only within the class but its lifetime is the entire
program.

Static variables are normally used to maintain values common to the
entire class, e.g count. It can be defined as

int item::count;
Note that, the type and scope of each static member variable must be
defined outside the class.

Static Data Members
#include<iostream>
using namespace std;
class item
{
 static int count;
 int number;
 public:
 void getdata(int a)
 {
 number=a;
 count++;
 }
 void display_count()
 {
 cout<<"Count = "<<count<<endl;
 }
};

int item::count; //count definition

int main()
{
 item x,y,z;
 x.display_count();
 y.display_count();
 z.display_count();

 x.getdata(10);
 y.getdata(20);
 z.getdata(30);

 cout<<"\nCount values after
reading data\n";
 x.display_count();
 y.display_count();
 z.display_count();
}

Static Data Members
#include<iostream>
using namespace std;
class item
{
 static int count;
 int number;
 public:
 void getdata(int a)
 {
 number=a;
 count++;
 }
 void display_count()
 {
 cout<<"Count = "<<count<<endl;
 }
};

int item::count; //count definition

int main()
{
 item x,y,z;
 x.display_count();
 y.display_count();
 z.display_count();

 x.getdata(10);
 y.getdata(20);
 z.getdata(30);

 cout<<"After reading data\n";
 x.display_count();
 y.display_count();
 z.display_count();
}

Output:
Count=0
Count=0
Count=0

After reading Data

Count=3
Count=3
Count=3

Static Member Functions
Like static member variables, we can also have static member

functions. A member function that is declared as static has

the following properties.

● A static function can have access to only other static

members(functions or variables) declared in the same

class.

● A static member function can be called using the class

name(instead of its objects) as follows:

class_name::function_name;

Static Member Functions
#include<iostream>
using namespace std;
class item
{ int code;
 static int count;
 public:
 void setcode()
 {
 code=++count;
 }
 void display_code()
 {
 cout<<"Object Member: "<<code<<”\n”;
 }
 static void display_count()
 {
 cout<<"Count : "<<count<<endl;
 }
};

int item::count;
int main()
{
 item x,y;
 x.setcode();
 y.setcode();

item::display_count();

 item z;
 z.setcode();

item::display_count();

 x.display_code();
 y.display_code();
 z.display_code();
}

Static Member Functions
#include<iostream>
using namespace std;
class item
{ int code;
 static int count;
 public:
 void setcode()
 {
 code=++count;
 }
 void display_code()
 {
 cout<<"Object Member: "<<code<<”\n”;
 }
 static void display_count()
 {
 cout<<"Count : "<<count<<endl;
 }
};

int item::count;
int main()
{
 item x,y;
 x.setcode();
 y.setcode();

item::display_count();

 item z;
 z.setcode();

item::display_count();

 x.display_code();
 y.display_code();
 z.display_code();
}

Output:
Count=2
Count=3

Object Member=1
Object Member=2
Object Member=3

Array of Object
Consider the following class definition

Consider following objects to above class employee

Array of Object
#include<iostream>
using namespace std;
class employee
{
 char name[20];
 float age;
 public:
 void getdata();
 void putdata();
};
void employee::getdata()
{
 cout<<"Enter Name : ";
 cin>>name;
 cout<<"Enter Age : ";
 cin>>age;
}

void employee::putdata()
{ cout<<"Name : "<<name<<"\n";
 cout<<"Age :"<<age<<endl;
};
int main()
{
 employee manager[3];
 for(int i=0;i<3;i++)
 { cout<<"Enter Details\n";
 manager[i].getdata();
 }
 for(int i=0;i<3;i++)
 {
 cout<<"\n Manager Details
are :\n";
 manager[i].putdata();
 }
}

Objects as a Function Arguments
#include<iostream>
using namespace std;
class time
{
 int hours;
 int minutes;
 public:
 void gettime(int h, int m)
 { hours=h;
 minutes=m;
 }
 void puttime()
 {
 cout<<hours<<":"<<minutes<<endl;
 }
 void sum(time t1,time t2);
};

void time::sum(time t1,time t2)
{ minutes=t1.minutes+t2.minutes;
 hours=minutes/60;
 minutes=minutes%60;
 hours=hours+t1.hours+t2.hours;
}

int main()
{ time T1,T2,T3;
 T1.gettime(2,45);
 T2.gettime(3,30);

 T3.sum(T1,T2);

 T1.puttime();
 T2.puttime();
 T3.puttime();
}

Objects as a Function Arguments
#include<iostream>
using namespace std;
class time
{
 int hours;
 int minutes;
 public:
 void gettime(int h, int m)
 { hours=h;
 minutes=m;
 }
 void puttime()
 {
 cout<<hours<<":"<<minutes<<endl;
 }
 void sum(time t1,time t2);
};

void time::sum(time t1,time t2)
{ minutes=t1.minutes+t2.minutes;
 hours=minutes/60;
 minutes=minutes%60;
 hours=hours+t1.hours+t2.hours;
}

int main()
{ time T1,T2,T3;
 T1.gettime(2,45);
 T2.gettime(3,30);

 T3.sum(T1,T2);

 T1.puttime();
 T2.puttime();
 T3.puttime();
}

Output:
2:45
3:30
6:15

Objects as a Function Arguments

Friendly Function
To make an outside function “friendly” to a class, we have to simply
declare this function as a friend of the class as shown below;

Friendly Function
A friend function possesses certain special characteristics:

● It is not in the scope of the class to which it has been declared

as friend.

● Since it is not in the scope of the class, it can not be called

using the object of that class. It can be invoked like a normal

function without the help of any object.

● Unlike member functions, it can not access the member names

directly and has to use and has to use an object name and dot

membership operator with each member name(e.g. A.x)

● It can be declared either in the public or in the private part of

a class without affecting its meaning.

● Usually, it has the object as a arguments.

Friendly Function
#include<iostream>
using namespace std;
class sample
{
 int a;
 int b;
 public:
 void getvalue()
 {
 a=25; b=40;
 }
 friend float mean(sample s);
};

float mean(sample s)
{
 return float(s.a+s.b)/2.0;
}

int main()
{
 sample s;
 s.getvalue();
 cout<<" Mean Value is : "<<mean(s);
}

Output:

Mean Value is : 32.5

